Types of Statistical Inference

Single categorical variable
One-proportion z-interval and test
(Chapters 19-21)

Single quantitative variable

One sample t-interval and test

(Chapter 23)

Two quantitative variables
Regression inference (Chapter 27)

Two categorical variables

Two categories each:
Two proportion z-interval and test (Chapter 22)

More than two categories each: Chi-square tests (Chapter 26)

One categorical, one quantitative variable

Two categories: 2-sample t-interval and test (Chapter 24)

Paired t-interval and test (Chapter 25)

More than two categories: ANOVA test (Chapter 28)

Confidence intervals (two-proportion z-intervals)

observed value ± (critical value)(standard error)

$$(\hat{p}_1 - \hat{p}_2) \pm z^* SE(\hat{p}_1 - \hat{p}_2)$$
 or $(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$

The critical value z^* depends on the level of confidence (e.g. 95%).

The new standard error formula comes from the formula for the standard deviation of a difference between two random variables

$$\sqrt{SD(X)^2 + SD(Y)^2}$$

Hypothesis tests (two-proportion z-tests)

$$z = \frac{\text{observed} - \text{expected}}{\text{standard error}}$$

- 1. State the null and alternative hypotheses. The null hypothesis is always H_0 : $p_1 = p_2$ i.e. $p_1 p_2 = 0$. The alternative is H_A : $p_1 \neq p_2$ or H_A : $p_1 < p_2$ or H_A : $p_1 > p_2$. (Pick one.)
- 2. Find the *z*-score of the sample using the null hypothesis.
- 3. Convert the z -score to a P-value.
- 4. Compare the P-value to α =.05.
- 5. Retain the null if the P-value is greater than α , and reject the null hypothesis if the P-value is less than α . Report the P-value of the test.

$$\hat{p}_{pooled} = \frac{success_1 + success_2}{n_1 + n_2}$$

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{SE_{pooled}(\hat{p}_1 - \hat{p}_2)}$$

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\frac{\hat{p}_{pooled}\hat{q}_{pooled}}{n_1} + \frac{\hat{p}_{pooled}\hat{q}_{pooled}}{n_2}}}$$